Stacking-based ensemble learning for remaining useful life estimation


Creative Commons License

Ture B. A., AKBULUT A., Zaim A. H., ÇATAL Ç.

SOFT COMPUTING, cilt.28, ss.1337-1349, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s00500-023-08322-6
  • Dergi Adı: SOFT COMPUTING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, INSPEC, zbMATH
  • Sayfa Sayıları: ss.1337-1349
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

Excessive and untimely maintenance prompts economic losses and unnecessary workload. Therefore, predictive maintenance models are developed to estimate the right time for maintenance. In this study, predictive models that estimate the remaining useful life of turbofan engines have been developed using deep learning algorithms on NASA's turbofan engine degradation simulation dataset. Before equipment failure, the proposed model presents an estimated timeline for maintenance. The experimental studies demonstrated that the stacking ensemble learning and the convolutional neural network (CNN) methods are superior to the other investigated methods. While the convolution neural network (CNN) method was superior to the other investigated methods with an accuracy of 93.93%, the stacking ensemble learning method provided the best result with an accuracy of 95.72%.