CRISPR/Cas9-mediated Bag-1 knockout increased mesenchymal characteristics of MCF-7 cells via Akt hyperactivation-mediated actin cytoskeleton remodeling


Creative Commons License

Kilbas P. O., Can N. D., Kizilboga T., Ezberci F., Dinler Doğanay G., ARISAN E. D., ...More

PLOS ONE, vol.17, no.1, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 17 Issue: 1
  • Publication Date: 2022
  • Doi Number: 10.1371/journal.pone.0261062
  • Journal Name: PLOS ONE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Istanbul Kültür University Affiliated: No

Abstract

Bag-1 protein is a crucial target in cancer to increase the survival and proliferation of cells. The Bag-1 expression is significantly upregulated in primary and metastatic cancer patients compared to normal breast tissue. Overexpression of Bag-1 decreases the efficiency of conventional chemotherapeutic drugs, whereas Bag-1 silencing enhances the apoptotic efficiency of therapeutics, mostly in hormone-positive breast cancer subtypes. In this study, we generated stable Bag-1 knockout (KO) MCF-7 breast cancer cells to monitor stress-mediated cellular alterations in comparison to wild type (wt) and Bag-1 overexpressing (Bag-1 OE) MCF-7 cells. Validation and characterization studies of Bag-1 KO cells showed different cellular morphology with hyperactive Akt signaling, which caused stress-mediated actin reorganization, focal adhesion decrease and led to mesenchymal characteristics in MCF-7 cells. A potent Akt inhibitor, MK-2206, suppressed mesenchymal transition in Bag-1 KO cells. Similar results were obtained following the recovery of Bag-1 isoforms (Bag-1S, M, or L) in Bag-1 KO cells. The findings of this study emphasized that Bag-1 is a mediator of actin-mediated cytoskeleton organization through regulating Akt activation.