Cesaro vector lattices and their ideals of finite elements


GÖNÜLLÜ U., Polat F., Weber M. R. R.

POSITIVITY, cilt.27, sa.2, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 27 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s11117-023-00977-7
  • Dergi Adı: POSITIVITY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Business Source Elite, Business Source Premier, MathSciNet, zbMATH
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

For the Cesaro matrix C = (c(nm))(n,m?N), where c(nm) = (1)/(n), if n = m and c(nm) = 0 otherwise, the Cesaro sequence spaces ces(0), ces(p) (for 1 < p < 8) and cesoo are defined. These spaces turn out to be real vector lattices and with respect to a corresponding (naturally introduced) norm they are all Banach lattices, and so possess (or not possess) some interesting properties. In particular, the relations to their generating ideals c(0), t(p) and t(8) are investigated. Finally the ideals of all finite, totally finite and selfmajorizing elements in ces(0), ces(p) (for 1 < p <8) and ces(8) are described in detail.