Finite-dimensional representations of Leavitt path algebras


Creative Commons License

Koc A., Ozaydin M.

FORUM MATHEMATICUM, cilt.30, sa.4, ss.915-928, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 4
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1515/forum-2016-0268
  • Dergi Adı: FORUM MATHEMATICUM
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.915-928
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

When Gamma is a row-finite digraph, we classify all finite-dimensional modules of the Leavitt path algebra L(Gamma) via an explicit Morita equivalence given by an effective combinatorial (reduction) algorithm on the digraph Gamma. The category of (unital) L(Gamma)-modules is equivalent to a full subcategory of quiver representations of Gamma. However, the category of finite-dimensional representations of L(Gamma) is tame in contrast to the finite-dimensional quiver representations of G, which are almost always wild.