Separation of Bouguer anomaly map using cellular neural network


ALBORA A. M., Ucan O., Ozmen A., Ozkan T.

JOURNAL OF APPLIED GEOPHYSICS, cilt.46, sa.2, ss.129-142, 2001 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 2
  • Basım Tarihi: 2001
  • Doi Numarası: 10.1016/s0926-9851(01)00033-7
  • Dergi Adı: JOURNAL OF APPLIED GEOPHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.129-142
  • İstanbul Kültür Üniversitesi Adresli: Hayır

Özet

In this paper, a modern image-processing technique, the Cellular Neural Network (CNN) has been firstly applied to Bouguer anomaly map of synthetic examples and then to data from the Sivas-Divrigi Akdag region. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behaviour of the CNN is defined by two template matrices and a template vector. We have optimised the weight coefficients of these templates using the Recurrent Perceptron Learning Algorithm (RPLA). After testing CNN performance on synthetic examples, the CNN approach has been applied to the Bouguer anomaly of Sivas-Divrigi Akdag region and the results match drilling logs done by Mineral Research and Exploration (MTA). (C) 2001 Published by Elsevier Science B.V.