Utilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids With A Comparative Analysis of Ten Distributions


Wadi M., ELMASRY W., Colak I., Jouda M., Kucuk I.

ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/15325008.2024.2346830
  • Dergi Adı: ELECTRIC POWER COMPONENTS AND SYSTEMS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Business Source Elite, Business Source Premier, Communication Abstracts, Compendex, Environment Index, INSPEC, Metadex, DIALNET, Civil Engineering Abstracts
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

Renewable energy presents the most favorable approach to address the escalating challenge of greenhouse gas emissions while simultaneously guaranteeing the safeguarding of the environment. This article utilizes ten different distributions to approximate the wind energy integration in smart grids. The employed distributions are Rayleigh, Poisson, Weibull, Normal, Gamma, Laplace, LogNormal, Nakagami, Birnbaum Saunders, and Burr. The parameters of each distribution are calculated based on metaheuristic methods such as particle swarm optimization and genetic algorithms. Six error criteria have been employed to evaluate the precision of introduced distributions and metaheuristic methods. The approximation is performed by utilizing the wind data collected over three years hourly in the Marmara region of Turkiye. The empirical findings indicate that Gamma, Burr, and Weibull distributions exhibit more significant superiority than the remaining distributions across all datasets.