An integrated assessment of food waste model through intuitionistic fuzzy cognitive maps


Emir O., Önsel Ekici Ş.

JOURNAL OF CLEANER PRODUCTION, cilt.418, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 418
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.jclepro.2023.138061
  • Dergi Adı: JOURNAL OF CLEANER PRODUCTION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Business Source Elite, Business Source Premier, CAB Abstracts, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

In recent years, the waste management field has received substantial attention from policymakers, organizations, academics, and researchers due to increased focus on sustainability and carbon footprint reduction as well as concerns around rapid depletion of natural resources, public health, and environmental impact. Studies on food waste management have become especially important given the dramatic growth of the world's population and global hunger and malnutrition crisis. Considering the fact that one-third of the world's food supply is wasted or lost annually while hundreds of millions of people are living with food insecurity, it is easy to understand the importance of research studying appropriate food waste management actions for sustainability. Since the subject of food waste involves complicated linkages, the determination of a suitable model is pivotal. Integrated assessment models (IAMs) have been commonly used to uncover hidden patterns and present insights to policymakers. Furthermore, these models are well-designed to integrate data, information, and multidisciplinary knowledge into a single framework. This project presents a Fuzzy Cognitive Map (FCM) extended with intuitionistic fuzzy sets using the documentary coding method. This intuitionistic FCM (iFCM) is used to analyze the primary factors, explore the interactions between food waste factors, and prioritize some policies to reduce food waste by incorporating hesitancy weight factors representing the lack of information. Then several what-if scenario analyses are generated to review the interrelationships between factors in the developed model and facilitate a decision-making process for researchers. Eventually, it is concluded that food waste reduction is achievable with the implementation of the right policies, and this also improves the other concepts such as the intention not to food waste, shopping routines, and planning routines.