A combinatorial discussion on finite dimensional Leavitt path algebras


Creative Commons License

Koc A., ESİN S., Guloglu I., Kanuni M.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.43, sa.6, ss.943-951, 2014 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 43 Sayı: 6
  • Basım Tarihi: 2014
  • Doi Numarası: 10.15672/hjms.2014437524
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.943-951
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

Any finite dimensional semisimple algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix rings over suitable division rings. We shall consider the direct sum of finite dimensional full matrix rings over a field K. All such finite dimensional semisimple algebras arise as finite dimensional Leavitt path algebras. For this specific finite dimensional semisimple algebra A over a field K, we define a uniquely determined specific graph - called a truncated tree associated with A - whose Leavitt path algebra is isomorphic to A. We define an algebraic invariant kappa(A) for A and count the number of isomorphism classes of Leavitt path algebras with the same fixed value of kappa(A). Moreover, we find the maximum and the minimum K-dimensions of the Leavitt path algebras. of possible trees with a given number of vertices and we also determine the number of distinct Leavitt path algebras of line graphs with a given number of vertices.