Deep Learning-Based Defect Prediction for Mobile Applications


Creative Commons License

Jorayeva M., AKBULUT A., ÇATAL Ç., Mishra A.

SENSORS, cilt.22, sa.13, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 13
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/s22134734
  • Dergi Adı: SENSORS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • İstanbul Kültür Üniversitesi Adresli: Evet

Özet

Smartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.